TUYỂN TẬP 80 BÀI TOÁN HÌNH HỌC LỚP 9 - bài 11
Bài 11. Cho tam giác ABC (AB = AC). Cạnh AB, BC, CA tiếp xúc với đường tròn (O) tại các điểm D, E, F . BF cắt (O) tại I , DI cắt BC tại M. Chứng minh :
Lời giải:
1. (HD) Theo t/c hai tiếp tuyến cắt nhau ta có AD = AF => tam giác ADF cân tại A => ÐADF = ÐAFD < 900 => sđ cung DF < 1800 => ÐDEF < 900 ( vì góc DEF nội tiếp chắn cung DE).
Chứng minh tương tự ta có ÐDFE < 900; ÐEDF < 900. Như vậy tam giác DEF có ba góc nhọn.
2. Ta có AB = AC (gt); AD = AF (theo trên) => => DF // BC.
3. DF // BC => BDFC là hình thang lại có Ð B = ÐC (vì tam giác ABC cân)
=> BDFC là hình thang cân do đó BDFC nội tiếp được một đường tròn .
Tags: Hình Học 9, TUYỂN TẬP 80 BÀI TOÁN HÌNH HỌC LỚP 9


Subscribe to:
Post Comments (Atom)
No comments: