TUYỂN TẬP 80 BÀI TOÁN HÌNH HỌC LỚP 9 - bài 26
Bài 26. Cho đường tròn (O), đường kính AB = 2R. Vẽ dây cung CD ^ AB ở H. Gọi M là điểm chính giữa của cung CB, I là giao điểm của CB và OM. K là giao điểm của AM và CB. Chứng minh :
1. 2. AM là tia phân giác của ÐCMD. 3. Tứ giác OHCI nội tiếp
4. Chứng minh đường vuông góc kẻ từ M đến AC còng là tiếp tuyến của đường tròn tại M.
Lời giải: 1. Theo giả thiết M là trung điểm của =>
=> ÐCAM = ÐBAM (hai góc nội tiếp chắn hai cung bằng nhau) => AK là tia phân giác của góc CAB => ( t/c tia phân giác của tam giác )
2. (HD) Theo giả thiết CD ^ AB => A là trung điểm của => ÐCMA = ÐDMA => MA là tia phân giác của góc CMD.
3. (HD) Theo giả thiết M là trung điểm của => OM ^ BC tại I => ÐOIC = 900 ; CD ^ AB tại H => ÐOHC = 900 => ÐOIC + ÐOHC = 1800 mà đây là hai góc đối => tứ giác OHCI nội tiếp
4. Kẻ MJ ^ AC ta có MJ // BC ( vì cùng vuông góc với AC). Theo trên OM ^ BC => OM ^ MJ tại J suy ra MJ là tiếp tuyến của đường tròn tại M.
Lưu ý kí hiệu Ð có nghĩa là góc.
Tags: Hình Học 9, TUYỂN TẬP 80 BÀI TOÁN HÌNH HỌC LỚP 9
No comments: