TUYỂN TẬP 80 BÀI TOÁN HÌNH HỌC LỚP 9 - bài 17
Bài 17. Cho tam giác đều ABC có đường cao là AH. Trên cạnh BC lấy điểm M bất kì ( M không trùng B. C, H ) ; từ M kẻ MP, MQ vuông góc với các cạnh AB. AC.
1. Chứng minh APMQ là tứ giác nội tiếp và hãy xác định tâm O của đường tròn ngoại tiếp tứ giác đó.
2. Chứng minh rằng MP + MQ = AH.
3. Chứng minh OH ^ PQ.
Lời giải:
1. Ta có MP ^ AB (gt) => ÐAPM = 900; MQ ^ AC (gt)
=> ÐAQM = 900 như vậy P và Q cùng nhìn BC dưới một góc bằng 900 nên P và Q cùng nằm trên đường tròn đường kính AM => APMQ là tứ giác nội tiếp.
* Vì AM là đường kính của đường tròn ngoại tiếp tứ giác APMQ tâm O của đường tròn ngoại tiếp tứ giác APMQ là trung điểm của AM.
2. Tam giác ABC có AH là đường cao => SABC = BC.AH.
Tam giác ABM có MP là đường cao => SABM = AB.MP
Ta có SABM + SACM = SABC => AB.MP + AC.MQ = BC.AH => AB.MP + AC.MQ = BC.AH
Mà AB = BC = CA (vì tam giác ABC đều) => MP + MQ = AH.
4. Tam giác ABC có AH là đường cao nên còng là đường phân giác => ÐHAP = ÐHAQ => ( tính chất góc nội tiếp ) => ÐHOP = ÐHOQ (t/c góc ở tâm) => OH là tia phân giác góc POQ. Mà tam giác POQ cân tại O ( vì OP và OQ cùng là bán kính) nên suy ra OH còng là đường cao => OH ^ PQ
Luu ý kí hiệu Ð có nghĩa là góc.
Tags: Hình Học 9, TUYỂN TẬP 80 BÀI TOÁN HÌNH HỌC LỚP 9
No comments: