TUYỂN TẬP 80 BÀI TOÁN HÌNH HỌC LỚP 9 - bài 6
Bài 6 Cho tam giác ABC vuông ở A, đường cao AH. Vẽ đường tròn tâm A bán kính AH. Gọi HD là đường kính của đường tròn (A; AH). Tiếp tuyến của đường tròn tại D cắt CA ở E.
1. Chứng minh tam giác BEC cân.
2. Gọi I là hình chiếu của A trên BE, Chứng minh rằng AI = AH.
3. Chứng minh rằng BE là tiếp tuyến của đường tròn (A; AH).
4. Chứng minh BE = BH + DE.
Lời giải: (HD)
1. D AHC = DADE (g.c.g) => ED = HC (1) và AE = AC (2).
Vì AB ^CE (gt), do đó AB vừa là đường cao vừa là đường trung tuyến của DBEC => BEC là tam giác cân. => gócB1 = gócB2
2. Hai tam giác vuông ABI và ABH có cạnh huyền AB chung, gócB1 = gócB2 => D AHB = DAIB => AI = AH.
3. AI = AH và BE ^ AI tại I => BE là tiếp tuyến của (A; AH) tại I.
4. DE = IE và BI = BH => BE = BI+IE = BH + ED
Tags: Hình Học 9, TUYỂN TẬP 80 BÀI TOÁN HÌNH HỌC LỚP 9
No comments: