TUYỂN TẬP 80 BÀI TOÁN HÌNH HỌC LỚP 9 - bài 12



Bài 12  Cho đường tròn  (O) bán kính R có hai đường kính AB và CD vuông góc với nhau. Trên đoạn thẳng AB lấy điểm M (M khác O). CM cắt (O) tại N. Đường thẳng vuông góc với AB tại M cắt tiếp tuyến


tại N của đường tròn  ở P. Chứng minh :

  1. Tứ giác OMNP nội tiếp.
  2. Tứ giác CMPO là hình bình hành.
  3. CM. CN không phụ thuộc vào vị trí của điểm M.
  4. Khi M di chuyển trên đoạn thẳng AB thì P chạy trên đoạn thẳng cố định nào.

Lời giải:  

1. Ta có ÐOMP = 900 ( vì PM ^ AB ); ÐONP = 900 (vì NP là tiếp tuyến ).

Như vậy M và N cùng nhìn OP dưới một góc bằng 900 => M và N cùng nằm trên đường tròn  đường kính OP => Tứ giác OMNP nội tiếp.

2. Tứ giác OMNP nội tiếp => ÐOPM = Ð ONM (nội tiếp chắn cung OM)

 Tam giác  ONC cân tại O vì có ON = OC = R => ÐONC = ÐOCN


=>  ÐOPM = ÐOCM.

Xét hai tam giác  OMC và MOP ta có ÐMOC = ÐOMP = 900; ÐOPM = ÐOCM => ÐCMO = ÐPOM lại có MO là cạnh chung => DOMC = DMOP => OC = MP. (1)

Theo giả thiết Ta có CD ^ AB; PM ^ AB => CO//PM (2).

Từ (1) và (2) => Tứ giác CMPO là hình bình hành.

3. Xét hai tam giác OMC và NDC ta có ÐMOC = 900 ( gt CD ^ AB); ÐDNC = 900 (nội tiếp chắn nửa đường tròn ) => ÐMOC =ÐDNC = 900 lại có ÐC là góc chung => DOMC ~DNDC

=>  => CM. CN = CO.CD mà CO = R; CD = 2R nên CO.CD = 2R2 không đổi => CM.CN =2R2 không đổi hay tích CM. CN không phụ thuộc vào vị trí của điểm M.

4. ( HD) Dễ thấy DOMC = DDPO (c.g.c) => ÐODP = 900 => P chạy trên đường thẳng  cố định vuông góc với CD tại D.

Vì M chỉ chạy trên đoạn thẳng AB nên P chỉ chạy trên doạn thẳng A' B' song song và bằng AB.

 

 

Lưu ý: kí hiệu Ð có nghĩa là góc.




No comments:

 

© 2012 Học Để ThiBlog tài liệu