ĐỊNH LÍ THALÈS



ĐỊNH LÍ THALÈS - ĐỊNH LÍ ĐẢO
HỆ QUẢ CỦA ĐỊNH LÍ THALÈS

1. Định lí Thalès (Ta-lét) trong tam giác:
1.1. Tỉ số của hai đoạn thẳng:
Định nghĩa: Tỉ số của hai đoạn thẳng là tỉ số độ dài của chúng theo cùng một đơn vị đo.
1.2. Đoạn thẳng tỉ lệ:
Định nghĩa: Hai đoạn thẳng AB và CD gọi là tỉ lệ với hai đoạn thẳng A'B' và C'D' nếu có tỉ lệ thức : 
1.3. Định lí Thalès trong tam giác:
Định lí: Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh đó những đoạn thẳng tương ứng tỉ lệ.

2. Định lí đảo và hệ quả của định lí Thals:
2.1. Định lí Thalès đảo:
Định lí: Nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác.
 Cho tam giác ABC cĩ
 
Þ a // BC

2.2. Hệ quả của định lí Thalès:
Hệ quả: Nếu một đường thẳng cắt hai cạnh (hoặc cắt phần kéo dài của hai cạnh) của một tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh của tam giác đã cho.
Cho tam giác ABC cĩ  a // BC  Þ   
Bi tập:
1. Cho góc xOy. Trên tia Ox, lấy theo thứ tự 2 điểm A, B sao cho OA = 2cm, AB = 3cm. Trên tia Oy, lấy điểm C với OC = 3cm. Từ B, kẻ đường thẳng song song với AC cắt OY tại D. Tính độ dài CD.
2. Cho ∆ABC với trọng tâm G của tam giác. Qua G vẽ đường thẳng song song với AB cắt BC tại D. Chứng minh: 
3. Cho ∆ABC có AB = 7,5cm. Trên AB lấy điểm D với .
a)  Tính DA, DB
b)  Kẻ DHAC tại H, BKAC tại K. Tính tỉ số DH v BK.
c)  Cho biết AK = 4,5cm. Tính HK.
4.  Cho ∆ABC. Từ điểm D trện cạnh BC, kẻ các đường thẳng song song với các cạnh AB và AC, chúng cắt các cạnh AB và AC theo thứ tự E và F. Tính: 
5.  Cho ∆ABC. Từ D trên cạnh AB, kẻ đường thẳng song song với BC cắt AC tại E. Trên tia đối của tia CA, lấy điểm F sao cho CF = DB. Gọi M là giao điểm DF và BC. Chứng minh  
6. Cho hình bình hnh ABCD, MBC, điểm N thuộc tia đối của tia BC sao cho BN = CM. Các đường thẳng DN, DM cắt AB theo thứ tự tại E, F.
Chứng minh rằng: AE2 = EB.EF
7.  Một đường thẳng đi qua đỉnh A của hình bình hnh ABCD cắt BD, BC, DC theo thứ tự ở E, K,G. Chứng minh rằng:
a)  AE2 = EK.EG
b)  
8. Cho ∆ABC có đường cao AH. Trên AH, lấy các điểm K, I : AK = KI = IH. Qua I và K vẽ các đường thẳng EF // BC, MN // BC (E, M AB; F, N AC)
a)  Tính 
b)  Cho biết . Tính ?
9. Cho ∆ABC có BC = 10cm. Trên cạnh AB lấy các điểm D và E sao cho AD = DE = EB. Từ D, E kẻ các đường thẳng song song với BC, cắt cạnh AC theo thứ tự tại M, N. Tính DM và EN.
10. Hình thang ABCD (AB//CD, AB<CD) cĩ hai đường chéo AC và BD cắt nhau tại O. Chứng minh rằng: OA.OD = OB.OC
11. Cho hình thang ABCD (AB//CD, AB<CD). Đường thẳng song song với đáy AB cắt các cạnh bên và đường chéo AD, BD, AC và BC theo thứ tự tại các điểm M, N, P, Q. Chứng minh rằng: MN = PQ.
12.  Cho hình thang ABCD (AB//CD, AB<CD). Gọi trung điểm của các đường chéo AC và BD theo thứ tự là N và M. Chứng minh rằng:
a)  MN // AB
b) 
13. Hình thang ABCD (AB//CD,AB<CD) cĩ 2 đường chéo AC và BD cắt nhau tại O. Đường thẳng qua O và song song với đáy AB cắt các cạnh bên AD và BC theo thứ tự tại M, N. Chứng minh rằng OM = ON.
14. Cho hình thang ABCD (AB//CD,AB<CD). Gọi M l trung điểm của CD. Gọi I là giao điểm của AM và BD, K là giao điểm của BM v AC.
a)  Chứng minh: IK // AB.
b)  Đường thẳng IK cắt AD, BC theo thứ tự ở E và F. Chứng minh: EI = IK = KF.
15. Cho ∆ABC vuông tại A, đường cao AH. Từ điểm D nằm giữa H và C, vẽ DE vuơng gĩc DC (E thuộc AC); DK vuơng gĩc AC (K thuộc AC). Chứng minh: BE // HK
16.  Cho tam giác ABC, điểm I thuộc cạnh AB, điểm K thuộc cạnh AC. Vẽ IM // BK (M thuộc AC), vẽ KN // CI (N thuộc AB). Chứng minh: MN // BC




No comments:

 

© 2012 Học Để ThiBlog tài liệu